

 1

Binary instrumentation for
hackers and security professionals

Gal Diskin / Intel

Special thanks to Tevi Devor from the PIN
development team

 2

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and
reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel
products, reference www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

 3

All code in this presentation is covered
by the following:
•  /*BEGIN_LEGAL
•  Intel Open Source License

•  Copyright (c) 2002-2010 Intel Corporation. All rights reserved.
• 
•  Redistribution and use in source and binary forms, with or without
•  modification, are permitted provided that the following conditions are
•  met:

•  Redistributions of source code must retain the above copyright notice,
•  this list of conditions and the following disclaimer. Redistributions
•  in binary form must reproduce the above copyright notice, this list of
•  conditions and the following disclaimer in the documentation and/or
•  other materials provided with the distribution. Neither the name of
•  the Intel Corporation nor the names of its contributors may be used to
•  endorse or promote products derived from this software without
•  specific prior written permission.
• 
•  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
•  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
•  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
•  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR
•  ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
•  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
•  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
•  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
•  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
•  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
•  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
•  END_LEGAL */

 4

INTRODUCTION
Part 1

 5

• Introduction
– What is Instrumentation
– Why should you care? Potential usages

• PIN – A binary instrumentation engine
– About PIN
– Understanding PIN – a case study in instruction counting

• A practical example – catching “double-free”
• Advanced stuff and closing notes

– Probe mode and JIT mode
– Advanced PIN capabilities
– Alternatives
– How to learn more
– Call for action

Agenda

 6

Instrumentation

• Source-Code Instrumentation
• Static Binary Instrumentation
• Dynamic Binary Instrumentation

q Instrument code just before it runs (Just In Time – JIT)
– No need to recompile or re-link
– Discover code at runtime
– Handle dynamically-generated code
– Attach to running processes

A technique that inserts code into a program to collect
run-time information

q  Program analysis : performance profiling, error detection,
capture & replay
q  Architectural study : processor and cache simulation, trace
collection

 7

Why should you care?

•  The previous slide didn’t mention all potential usages
•  Potential security related usages:

–  Sandboxing & Forcing security practices
–  Behavior-based security
–  Pre-patching
–  Reversing, unpacking & de-obfuscation
–  SW analysis, for example - Parallel studio

–  Thread checking
–  Memory checking

–  Taint-analysis
–  Anti-viruses
–  Automated vulnerability classification / analysis
–  Deterministic replay
–  …

• Do you have tool ideas? Let me know and I might help

 8

Part 1 - Summary

• Instrumentation – a technique to inject code into a
program

• Dynamic binary instrumentation – what we will
focus on today

• Instrumentation has tons of uber kwel usages for
offense and defense

 9

PIN – A DYNAMIC BINARY
INSTRUMENTATION ENGINE

Part 2

 10

What Does “Pin” Stand For?

• Three Letter Acronyms @ Intel
– TLAs
– 263 possible TLAs

–  263 -1 are in use at Intel
– Only 1 is not approved for use at Intel
– Guess which one:

•  Pin Is Not an acronym

 11

Pin Instrumentation

• Multi-platform:
– Linux
– Windows
– OS X (not supported anymore)

• Multi-architecture:
–  IA32
– x86-64 (aka Intel64 / AMD64)
–  Itanium (aka IA64, only Linux)
– ARM (not supported anymore)

• Robust & Efficient

 12

Pin availability
• Popular and well supported

– 40,000+ downloads, 400+ citations

• Free Download
– www.pintool.org
– Free for non-commercial use
– Includes: Detailed user manual, source code for 100s of

Pin tools

• Pin User Group (PinHeads)
–  http://tech.groups.yahoo.com/group/pinheads/
– Pin users and Pin developers answer questions

 13

Pin and Pin Tools

• Pin – the instrumentation engine
• Pin Tool – the instrumentation program

• Pin provides a framework, the Pin Tool uses the
framework to do something meaningful

• Pin Tools
– Written in C/C++ using Pin APIs
– Many open source examples provided with the Pin kit
– Certain do’s and dont’s apply

 14

Instruction Counting Tool
#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v)
{
 INS_InsertCall(ins, IPOINT_BEFORE,
 (AFUNPTR)docount, IARG_END);
}

void Fini(INT32 code, void *v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])
{
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram(); // Never returns
 return 0;
}

Start
Here

 15

Instrumentation vs. Analysis

• Instrumentation routines define where
instrumentation is inserted

– e.g., before instruction
C Occurs first time an instruction is executed

• Analysis routines define what to do when
instrumentation is activated

– e.g., increment counter
C Occurs every time an instruction is

executed

 16

Instruction Counting Tool
#include "pin.h"

UINT64 icount = 0;

void docount() { icount++; }

void Instruction(INS ins, void *v)
{
 INS_InsertCall(ins, IPOINT_BEFORE,
 (AFUNPTR)docount, IARG_END);
}

void Fini(INT32 code, void *v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])
{
 PIN_Init(argc, argv);
 INS_AddInstrumentFunction(Instruction, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram(); // Never returns
 return 0;
}

 17

Instrumentation Granularity

• Instruction
• Basic Block
• Trace

• Routine
• Section
• Image

• Process
• Thread
• Exception

 18

Instrumentation Points

IPOINT_BEFORE Insert a call before an instruction
or routine.

IPOINT_AFTER Insert a call on the fall thorugh
path of an instruction or return
path of a routine.

IPOINT_ANYWHERE Insert a call anywhere inside a
trace or a bbl.

IPOINT_TAKEN_BRANCH Insert a call on the taken edge of
branch, the side effects of the
branch are visible.

 19

#include "pin.H"

UINT64 icount = 0;

void PIN_FAST_ANALYSIS_CALL docount(INT32 c) { icount += c; }

void Trace(TRACE trace, void *v){// Pin Callback
 for(BBL bbl = TRACE_BblHead(trace);
 BBL_Valid(bbl);
 bbl = BBL_Next(bbl))
 BBL_InsertCall(bbl, IPOINT_ANYWHERE,
 (AFUNPTR)docount, IARG_FAST_ANALYSIS_CALL,
 IARG_UINT32, BBL_NumIns(bbl),
 IARG_END);
}

void Fini(INT32 code, void *v) {// Pin Callback
 fprintf(stderr, "Count %lld\n", icount);
}

int main(int argc, char * argv[]) {
 PIN_Init(argc, argv);
 TRACE_AddInstrumentFunction(Trace, 0);
 PIN_AddFiniFunction(Fini, 0);
 PIN_StartProgram();
 return 0;
}

A Better Instruction Counting Tool

 20

Summary of Part 2

• Pin is a dynamic binary instrumentation engine
• Pin is available freely for non-commercial purposes
• Pin is the engine, Pin Tools are programs controlling

the engine

• Instrumentation routines are called once, analysis
routines are called every time

• There are many levels of granularity
– You should try to use the lowest answering your needs

• You can change instrumentation points

 21

A PRACTICAL EXAMPLE
CATCHING “DOUBLE-FREE”

Part 3

 22

Main + Includes
#include "pin.H"	

#include <iostream>	

#include <iomanip>	

#include <algorithm>	

#include <list>

	

int main(int argc, char *argv[])	

{	

 // Initialize pin & symbol manager	

 PIN_InitSymbols();	

 PIN_Init(argc,argv);	

 	

 // Register Image to be called to instrument functions.	

 IMG_AddInstrumentFunction(Image, 0);	

 	

 PIN_StartProgram(); // Never returns	

 	

 return 0;	

}	

 23

Instrumentation Routine
VOID Image(IMG img, VOID *v) {	

 // Find the malloc() function and add our function after it	

 RTN mallocRtn = RTN_FindByName(img, "malloc");	

 if (RTN_Valid(mallocRtn))	

 {	

 RTN_Open(mallocRtn);	

 RTN_InsertCall(mallocRtn, IPOINT_AFTER, (AFUNPTR)MallocAfter,	

 IARG_FUNCRET_EXITPOINT_VALUE, IARG_END);	

 RTN_Close(mallocRtn);	

 }	

 // Find the free() function and add our function before it	

 RTN freeRtn = RTN_FindByName(img, "free");	

 if (RTN_Valid(freeRtn))	

 {	

 RTN_Open(freeRtn);	

 RTN_InsertCall(freeRtn, IPOINT_BEFORE, (AFUNPTR)FreeBefore,	

 IARG_ADDRINT, "free",	

 IARG_FUNCARG_ENTRYPOINT_VALUE, 0,	

 IARG_END);	

 RTN_Close(freeRtn);	

 }	

}	

 24

Analysis routines
list<ADDRINT> MallocAddrs;

VOID MallocAfter(ADDRINT ret)
{
 // Save teh address returned by malloc in our list
 MallocAddrs.push_back(ret);
}	

VOID FreeBefore(CHAR * name, ADDRINT target)
{
 list<ADDRINT>::iterator p;

 p = find(MallocAddrs.begin(), MallocAddrs.end(), target);
 if (MallocAddrs.end() != p)
 {
 p = MallocAddrs.erase(p);
 } // Delete this from the allocated address list
 else
 { // We caught a Free of an un-allocated address
 cout << hex << target << endl;
 } // Using cout is not a good practice, I do it for the example only
}

	

 25

Summary of part 3

• It is relatively simple to write Pin Tools

• Writing a tool to catch double free is very simple
and takes less than 50 lines of actual code

• Using simple tools we can catch vulnerabilities
relatively easily

• Did anyone notice the flaw in the tool?

 26

ADVANCED STUFF AND
CLOSING NOTES

Part 4

 27

Probe mode and JIT mode

• JIT Mode
– Pin creates a modified copy of the application on-

the-fly
– Original code never executes

Ø More flexible, more common approach

• Probe Mode
– Pin modifies the original application instructions
– Inserts jumps to instrumentation code

(trampolines)

Ø Lower overhead (less flexible) approach

 28

Advanced Pin APIs
• Transparent debugging and extending the debugger
• Attaching and detaching
• System call instrumentation
• Managing Exceptions and Signals
• Instrumenting a process tree
• Accessing Decode API
• CONTEXT* and IARG_CONST_CONTEXT,

IARG_CONTEXT
• Fast buffering API
• Pin Code-Cache API

 29

Alternative instrumentation engines

• DyanmoRIO
• Valgrind
• Dtrace
• SystemTap (based on kprobes)
•  Frysk
• GDB can also be seen as a DBI
• Bistro (EOL)

• Add your favorite DBI engine here

 30

Learning more about Pin

• Website – www.pintool.org
– Free Pin kit downloads
– Many open source Pin Tool examples
– An extensive manual
– Links to papers and extensive tutorials given in conferences

• PinHeads - Mailing list / newsgroup
– http://tech.groups.yahoo.com/group/pinheads/

 31

Call for action

• Start learning and using binary instrumentation
• Create your own Pin Tools and share with the DC9723

community and all the security community

• Did anybody come up with a tool idea?
–  Feel free to contact me

 32

QUESTIONS?

Contact details:
-  gal.diskin@intel.com
-  www.diskin.org

